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Theoretically-based equations of state previously developed for hard models of
molecular pure fluids and mixtures are extended in this paper to repulsive
models of pure n-alkane fluids and mixtures. For pure fluids, the compressibility
factor is expressed in terms of a scaling of the excess compressibility factor of a
hard-sphere fluid with a packing fraction equal to the effective packing fraction
of the true fluid. For mixtures, the excess compressibility factor is expressed as a
similar scaling of the excess compressibility factor of a hard-sphere fluid
mixture. The theory requires two parameters, namely the scaling factor and the
effective (averaged) molecular volume of the fluid (mixture), which can be
determined from the molecular geometry. Results are in generally good agree-
ment with available simulation data.

KEY WORDS: BMCSL equation; Carnahan–Starling equation; equation of
state; hard-body fluids; hard-sphere fluid.

1. INTRODUCTION

Much progress in our understanding of the properties of molecular fluids
and fluid mixtures has been achieved in the last three decades. This is par-
tially due to the increase in the performance of modern computers which
has allowed more and more complicated models of molecular fluids to be
simulated. This, in turn, has favored theoretical developments which often
use simulation data to compare with theoretical predictions.

One of the most significant advances has arisen from the recognition
that repulsive forces mainly determine the structure and properties of
fluids. This has led to focus efforts towards the development of accurate
theories for repulsive models of real molecular fluids. From these theories



the properties of molecular fluids having attractive intermolecular interac-
tions in addition to repulsive ones can be obtained from perturbation
theories [1–6], using for the reference fluid the structural and thermody-
namic properties of a repulsive model suitable to the fluid under study.

Regarding repulsive models of fluids and fluid mixtures, the most
widely studied are those whose molecules are modelled as hard bodies and,
for them, there are available several theories. Restricting ourselves to
theories for nonspherical molecular fluids, we can mention the scaled par-
ticle theory (SPT) [7, 8] and other related approximations [9–11], integral
equation theories [12–16], thermodynamic perturbation theory (TPT) [12,
17], bonded hard-sphere (BHS) theory [18–20], and generalized Flory
(GF) and Flory dimer (GFD) theories [21–24].

All of these theories present limitations of one kind or another. Some
of them apply to a given family of hard-body fluids or fluid mixtures, such
as that consisting of flexible molecules. Others are accurate for fluids whose
molecules have a reduced number of monomers, but their performance
deteriorates as the number of monomers increases. Some of these theories
have a degree of complexity that increases with the number of monomers
of the molecules.

The situation is still more complicated for repulsive models of n-alka-
nes because, due to the torsional capability of the molecules, even a pure
fluid must be considered as a mixture of conformers. Therefore, the study
of these model fluids from computer simulation, and to some extent from
theory too, represents a greater challenge as compared with other polya-
tomic fluids with lower molecular complexity.

In spite of this, considerable attention has been paid in the last decade
to these kinds of model fluids and mixtures [25–30]. This has led very
recently [31, 32] to the development of a perturbation theory for n-alkane
fluid mixtures with realistic potentials which provides qualitative agreement
with experimental data.

Within this context, the development of reliable equations of state for
the reference systems, namely the repulsive models of pure and mixed
n-alkanes, acquires special interest. This is the aim of this paper, where an
equation of state which has proved to be accurate for a wide variety of
hard-body fluids [33] is extended to repulsive models of pure n-alkane
fluids. On the basis of this, an equation of state for n-alkane fluid mixtures
is also derived following the procedure previously used for other hard-body
fluid mixtures [34, 35] consisting of simpler molecules. In Section 2, the
derivation of the equations of state for pure hard-body fluids and fluid
mixtures is summarized. In Section 3, the equations are applied to models
of pure and mixed n-alkane fluids and results are compared with available
simulation data and with the results obtained from several other equations

430 Maeso and Solana



of state used for hard-body fluids. Results are discussed in Section 4, where
the possible extension to real n-alkane fluids is also analyzed.

2. THEORY

2.1. Pure Hard-Body Fluids

The virial equation for a hard-sphere (HS) fluid can be expressed in
the form,

ZHS=1+2
3 prs3gHS(0), (1)

where r=N/V is the number density, s is the diameter of a sphere, and
gHS(0) is the contact value of the pair correlation function. The preceding
equation can be expressed in an alternative way,

ZHS=1+1
6 rS1+2sgHS(0). (2)

Here, S1+2=4ps2 is the surface determined by the center of sphere 2 when
it moves around sphere 1 with the two spheres remaining in contact, and s

can be considered as the center-to-center distance between the two spheres
in contact.

A similar expression applies [36] to a fluid consisting of hard-convex-
body (HCB) molecules. However, in this case the contact pair correlation
function and the contact distance depend on the relative orientations of the
two molecules in contact, so that they must be expressed as averaged
quantities. Therefore

ZHCB=1+1
6 rS1+2savgav(0). (3)

In this case, for equal molecules S1+2=2S+8pR2, where S is the surface
area of the molecule and R its mean radius of curvature. On the other
hand, sav=Or12 · nP, where r12 is the position vector from a reference point
in molecule 1 to another in molecule 2, n is the unit vector normal to the
surface at the contact point, and the angular brackets mean an average.

If we consider a fluid of hard spheres with the same density r and the
same molecular volume v as the HCB fluid, the ratio of the excess
compressibility factor of the two fluids is

ZHCB − 1
ZHS − 1

=
1
2
1a+

4
3

pR3

v
2 sav

2R
gav(0)
gHS(0)

, (4)

where we have introduced the nonsphericity parameter a=RS/3v.
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In the low density limit the compressibility factors involved in Eq. (4)
can be expressed as ZHCB 4 1+BgHCBg and ZHS 4 1+BgHSg, where
BgHCB=1+3a is the exact second virial coefficient of the HCB fluid and
BgHS=4 that of the HS fluid. In the same limit, gav(0)=1 and sav=sav

0 .
On the other hand, R, v, and a can be calculated exactly from geometry for
HCB molecules [37, 38]. Then, Eq. (4) allows us to obtain the ratio
sav

0 /2R. This ratio is obviously 1 for hard spheres, that is, for a=1. For
nonspherical molecules, it is found that the ratio decreases as anisotropy
increases and, for example, sav

0 /2R 4 0.8 for a 4 1.5. As density increases,
simulation data [11, 39–41] for fluids consisting of moderately nonspheri-
cal HCB molecules show that the ratio sav/2R slowly decreases below its
low density limiting value whereas the opposite behavior holds for the ratio
gav(0)/gHS(0). Therefore, for moderate to high densities, the contact values
of the two correlation functions scale approximately as [33]

gav(0)
gHS(0)

%
2R
sav . (5)

Strictly speaking, the ratio sav(0) gav(0)/2RgHS(0) is slightly lower than 1.
However, we can retain the simple scaling of Eq. (5) if we introduce into
Eq. (4) the approximation (4/3) pR3 4 RS, which is exact for hard spheres.
This reduces the right-hand side of Eq. (4) simply to a.

Then, by allowing the right-hand side of Eq. (4) to switch between the
low and high density behaviors, we can express the equation of state of a
HCB fluid in the form,

ZHCB=1+DBgg+a(ZHS − 1), (6)

where DBg=Bg − 4a=1 − a.
For a hard-sphere fluid, a=1, and Eq. (6) reduces to the equation of

state of a hard-sphere fluid. The latter can be well reproduced by the
Carnahan–Starling equation [42]

ZCS=
1+g+g2 − g3

(1 − g)3 . (7)

For values of a close to 1, we can put DBg 4 0, and Eq. (6) reduces to

ZHCB=1+a(ZHS − 1). (8)

An equivalent expression has been derived [43] on the basis of a modified
cell theory for HCB fluids. A similar expression has been proposed [44]
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for hard-chain molecular fluids, using instead of a a parameter c which is a
function of a.

On the other hand, if the low density behavior could be extended to
high densities, the final expression of the equation of state would be similar
to Eq. (8), but using Bg/4 instead of a. This is the equation of state which
results from the Parsons–Lee [45–47] theory applied to the isotropic fluid.

However, it has been shown [33] that for nonconvex hard-body fluids
it is necessary to introduce the effective packing fraction gef=rvef, where
vef is the effective molecular volume, instead of the packing fraction g. This
effective molecular volume is defined as the volume that a molecule exclu-
des to any point of another molecule. For HCB molecules, the effective and
real molecular volumes are equal, but for hard nonconvex molecules, the
former is slightly higher than the latter. The use of the effective packing
fraction in combination with the Parsons–Lee theory results in a consider-
able improvement in the accuracy of the equation of state for linear fused
hard-sphere chains, as found very recently [48].

In addition to the effective molecular volume, an effective nonspheri-
city parameter aef must be introduced into Eq. (6) instead of a. However,
because R is ill-defined for hard nonconvex molecules, the effective
nonsphericity parameter cannot be obtained for them in the same form as
for HCB molecules. However, for polyatomic molecules consisting of n
equal-sized spheres of diameter s and center-to-center distance l, we can
use an alternative definition [49] in the form

aef=
1

3p

(“vef/“s)l (“
2vef/“s2)l

vef . (9)

With these modifications, the equation of state, for both convex and
nonconvex hard-body (HB) fluids, reads

ZHB=1+DBgefgef+aef[ZHS(gef) − 1], (10)

where DBgef=Bg(gef) − 4aef, with Bg(gef)=Bg(g) v/vef, and Bg(g) ]

1+3a for nonconvex molecules. The notations Bg(g) and Bg(gef) indicate
the second virial coefficients in the expansions of the compressibility factor
in a power series of the packing fraction g and in a power series of the
effective packing fraction gef, respectively.

2.2. Hard-Body Fluid Mixtures

Consider now a mixture of HCB molecules at high densities. If we
consider separately each of the fluids which form the mixture as a pure
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fluid, its excess compressibility factor will scale, with respect to the excess
compressibility factor of a HS fluid with the same packing fraction, in the
form seen before. For species i we will have

Zii − 1
aii

=ZHS(gii) − 1. (11)

Each of these ‘‘scaled’’ fluids behaves like a hard-sphere fluid. Therefore,
when they are mixed together, the mixture will behave as a hard-sphere
mixture. Then introducing a suitable scaling parameter amix for the mixture,
we can write

ZHCB
mix − 1
amix

=ZHS
mix(gmix) − 1. (12)

In this expression, ZHS
mix is the compressibility factor of a hard-sphere fluid

mixture and gmix=rvmix is the packing fraction of the mixture. The average
volume of a molecule in the mixture is

vmix=C
i

C
j

xixjvij. (13)

In Eq. (12), for the compressibility factor of the hard-sphere mixture,
we can take the Boublík–Mansoori–Carnahan–Starling–Leland equation
[50, 51]

ZHS
mix=

6
pr

1 zo

1 − z3
+

3z1z2

(1 − z3)2+
3z3

2

(1 − z3)3 −
z3z3

2

(1 − z3)3
2 , (14)

in which

zl=
pr

6
C

i
xi(si) l. (15)

where si is the diameter of spheres of component i and r is the total
number density.

To determine the parameter amix in Eq. (12), we will use a simple
argument. Let us assume that the equation of state of both the HCB fluid
mixture and the reference HS fluid mixture could be obtained from a
simple n-fluid model [52], with n equal to the number of different interac-
tions ij, from the equations of state of the corresponding pure fluids. Then,
from Eq. (8) we will have

ZHCB
mix =1+C

i
C

j
aij[ZHS(gij) − 1], (16)
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and

ZHS
mix=1+C

i
C

j
[ZHS(gij) − 1], (17)

respectively, where the last equation is obtained from Eq. (16) with aij=1
for every i and j.

The low density expansions of the last two equations to the first order
are

ZHCB
mix − 1 % C

i
C

j
aij4gij=4gmix C

i
C

j
aijxixj

vij

vmix
, (18)

and

ZHS
mix − 1 % 4gmix C

i
C

j
xixj

vij

vmix
=4gmix, (19)

where we have taken into account Eq. (13).
On the other hand, if introduce the last result into Eq. (12), we obtain

ZHCB
mix − 1 % amix4gmix. (20)

Comparison of this result with Eq. (18) gives

amix=C
i

C
j

xixjaij
vij

vmix
. (21)

To derive this result, we have used Eqs. (16) and (17), instead of
Eqs. (12) and (14) as we ought to have done. Nevertheless, Eqs. (16) and
(17) are related one to another in the same way as Eqs. (12) and (14), and it
is expected that, at least at low densities, the scaling factor will be the same.
However, the simple scaling law of Eq. (12) is expected to hold for
moderate to high densities, as in the pure fluid. Moreover, at higher densi-
ties, the scaling between Eqs. (16) and (17) is density dependent, while
amix is expected to be a constant for a given mixture. Therefore, we will
take Eq. (21) as an approximate result. The fact that the ratio
(ZHCB

mix − 1)/(ZHS
mix − 1) is essentially independent of density for a variety of

HCB fluid mixtures [34] and that the value of the ratio is well reproduced
by Eq. (21) confirms the validity of that assumption. Strictly speaking,
however, at low enough densities, the behaviour of the ratio is governed by
the ratio of the second virial coefficients as in the pure fluid case. To take
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into account the low and high density behaviors, we write the equation of
state for HCB fluid mixtures in the form

ZHCB
mix =1+DBg

mixgmix+amix[ZHS
mix(gmix) − 1], (22)

where DBg
mix=BgHCB

mix − amixBgHS
mix . Equation (22) reduces to Eq. (6) for a

pure HCB fluid, and to the compressibility factor of a HS fluid mixture for
a mixture of hard spheres, since in this case DBg

mix=0, aij=1 for every i
and j and, from Eq. (21), amix=1.

Equation (22) can be generalized to the case in which at least one of
the species in the mixture consists of nonconvex molecules by means of
introducing effective parameters. Then the general equation of state for
hard-body fluid mixtures is

ZHB
mix=1+DBgef

mix gef
mix+aef

mix[ZHS
mix(gef

mix) − 1], (23)

where gef
mix=rvef

mix, with

vef
mix=C

i
C

j
xixjv

ef
ij , (24)

aef
mix=C

i
C

j
xixja

ef
ij

vef
ij

vef
mix

, (25)

and DBgef
mix =BgHB

mix (gef
mix)−aef

mixBgHS
mix (gef

mix), where BgHB
mix (gef

mix) is the second
virial coefficient of the mixture in the expansion of the compressibility factor
in a power series of gef

mix, and is related to the second virial coefficient
BgHB

mix (gmix) in the expansion of the compressibility factor in a power series of
the packing fraction gmix in the form BgHB

mix (gef
mix)=BgHB

mix (gmix) vmix/vef
mix.

Equation (23) applies to both convex and nonconvex molecules.
However, there is a difference in the way it must be applied depending on
the type of molecules. For a convex molecule of species i, its effective
volume as ‘‘seen’’ by a molecule of species j is equal to the real volume of
the former, that is vef

ij =vii, and similarly aef
ij =aii. For a nonconvex mole-

cule, this is not the case in general, because the volume it excludes to
another molecule depends on the geometry of both molecules. As a conse-
quence, the parameters for a mixture can be determined from the param-
eters of the pure fluids that form the mixture in general only when all mol-
ecules are convex. For this reason, if Eq. (14) is to be used for ZHS

mix in
Eq. (23), it is necessary to introduce a small modification in the definition,
Eq. (15), of the parameters zl in the form,

zl=
pr

6
C

i
C

j
xixj(sij) l, (26)

where sij=[(6/p) vef
ij ]1/3.
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For many mixtures, DBgef
mix is close to zero and can be neglected. The

equation of state Eq. (23), or its simplified form which results from taking
DBgef

mix =0, in combination with Eq. (14) for the reference HS fluid mixture,
provides [34, 35] excellent agreement with simulation data.

3. APPLICATION TO n-ALKANE PURE FLUIDS AND MIXTURES

Computer simulations for hard models of n-alkanes have been per-
formed by Monson et al. [57, 29]. These authors consider models of
n-alkanes consisting of n hard spheres with n=3 to 8 with reduced center-
to-center distances lg=0.4, bond angles w=109.47°, and several torsional
potentials (for n \ 4) denoted as models I, II, and III in Ref. 29. Results
were reported in the form of equations fitted to the simulation data.
Among these models, we have considered the results corresponding to
model II, because it is the most suitable candidate to be treated approxi-
mately as a fluid consisting of rigid molecules as we will do in the present
paper.

On the other hand, Vega et al. [58] have performed computer simula-
tions of repulsive models of pure n-alkanes, with n=6, 7, 8, 12, 16, and 30,
as well as two equimolar n − m mixtures with n − m=10 − 6 and 12 − 4.
Molecules were modelled as n sites with intramolecular and intermolecular
interactions governed by a WCA-type potential

uWCA=˛4e 51s

r
212

−1s

r
266+e, r < 21/6s

0, r > 21/6s,

(27)

with E/k=72 K, s=3.923 Å, effective diameter d=3.7109 Å, as determined
from the Barker–Henderson [59] procedure, bond-angle w=109.5°, and
center-to-center distance l=1.53 Å. The temperature in the simulations was
set to T=366.88 K, and the molecules were allowed to adopt different con-
formations by means of a torsional potential. In the present paper, these
molecules will be approximated by fused hard spheres with diameters d and
reduced center-to-center distances lg=l/d=0.4123.

In order to apply Eq. (10) to these model fluids, we need to determine
the parameters which enter in this equation, namely, molecular volume v,
effective molecular volume vef, effective nonsphericity parameter aef, and
second virial coefficient Bg.

For a pure fluid of linear homonuclear molecules, each of them con-
sisting of n equal-sized spheres of diameter s with center-to-center distance
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l, the effective nonsphericity parameter aef has been defined [49] in the
form of Eq. (9) with the effective molecular volume vef given by [49]

vef=
ps3

6
51+3Lg −

Lg3

2(n − 1)2 − 3(n − 1) hgh6 , (28)

where Lg=L/s=(n − 1) lg, lg=l/s, hg=h/s=(1 − lg2/4)1/2 and h=
sin−1(lg/2), so that

1“vef

“s
2

l
=

ps2

2
51+

5Lg

2
− 3(n − 1) hgh −

Lg2h

4(n − 1) hg
6 , (29)

and

1“
2vef

“s2
2

l
=ps 51+2Lg − 3(n − 1) hgh −

3Lg2h

8(n − 1) hg

+
Lg3

16(n − 1)2 hg2+
Lg4h

32(n − 1)3 hg3
6 . (30)

A more general procedure to obtain the effective molecular volume for
nonlinear molecules has been developed by Connolly [53, 54]. However,
definition Eq. (9) seems not to be appropriate for nonlinear molecules [55]
when the effective molecular volume is determined in this way. A better
prescription consists of using definition Eq. (9) with the effective molecular
volume determined from Eq. (28) as for linear molecules, but using the
effective molecular volume for the nonlinear molecule, as determined from
the procedure of Connolly to determine the effective packing fraction gef.
This is illustrated in Fig. 1, where the compressibility factor for hard
homonuclear nonlinear triatomic molecular fluids, as determined from
Eq. (10) with vef and aef determined in this way and using for Bg the
numerical values reported in Ref. 55, are compared with simulation data
[56]. We can see that, except perhaps for the lowest value of the bond
angle w, the agreement between theory and simulation is fairly good.
Therefore, we have adopted the same criterion to determine vef and aef for
the repulsive models of n-alkanes considered here. However, we must
mention the fact that, as we will see later, for the fluids considered in this
paper, effective molecular volumes calculated from the Connolly procedure
are nearly identical to those calculated from Eq. (28) for linear molecules.
Therefore, the latter should be preferred as it is much simpler to use than
the Connolly procedure.
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Z
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η 

Fig. 1. Equation of state for hard homo-
nuclear nonlinear triatomic molecular fluids.
Points: simulation data [56] for bond angles
w=60° (circles), w=90° (squares),
w=120° (triangles), and w=150° (dia-
monds). Continuous, dashed, dash-dotted,
and dotted curves are the results from
Eq. (10) for the same bond angles.

On the other hand, values of the averaged molecular volume v for the
cases considered in Ref. 29 were reported in the same paper. For the cases
of Refs. 57 and 58, we have used the procedure of Connolly [53, 54].

With regard to the second virial coefficient Bg, it has been shown [58]
that a good estimate of the second virial coefficient for a given conformer
of the n-alkane molecular models considered in that reference can be
obtained from the relationship,

Bg=1+3a, (31)

where a=RS/3v, taking for S and v, the real surface area and volume,
respectively, of the conformer and for the mean radius of curvature R,
which is not well defined for this kind of molecules that corresponding to a
parallelepiped of sides a, b, and c,

R=
a+b+c

4
, (32)

with a, b, and c determined in such a way that the principal moments of
inertia of both, the conformer and the parallelepiped, are equal. Details of
this procedure are given in the same paper as well as weighted average
values of a for the different conformers which form the n-alkane fluid. We
have used the same procedure to determine the second virial coefficient of
the models considered in Refs. 57 and 29, but considering only the all-trans
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conformer for each n because we are not aware of the configurations
present and their statistical weight. This may involve a small error in the
estimate of a, and therefore of Bg, which in any case should be of little
effect on the resulting values of the equation of state, Eq. (10). To deter-
mine S and v, we have again used the procedure of Connolly [53, 54].

For the mixtures considered here, parameters vmix, vef
mix, and aef

mix,
which enter in Eq. (23), can be determined from the corresponding param-
eters for the pure fluids by means of Eqs. (13), (24), and (25). This is so
because, for the mixtures in which we are interested here, all spheres (or
effective spheres) are the same size regardless of if they belong to the same
molecular species or not. Therefore, vef

ij =vef
ii , vef

ji =vef
jj , aef

ij =aef
ii , and

aef
ji =aef

jj . Hence, Eqs. (13), (24), and (25), reduce to

vmix=C
i

xivii, (33)

vef
mix=C

i
xiv

ef
ii , (34)

Table I. Parameters Involved in Equations of State, Eqs. (10) and (23), for the Fluids Con-
sidered. Volumes Are in Units of s3 (or d3, in the Case of Molecules with Site-site Interactions

Given by the WCA-Type Potential)

n lg v vef a vef b a aef

3 0.4 1.1130 1.1273 1.1269 1.1876 1.1710
4 0.4 1.4059 1.4293 1.4286 1.2524 1.2903
5 0.4 1.6971 1.7314 1.7302 1.3351 1.4165
6 0.4 1.9892 2.0339 2.0319 1.4247 1.5464
7 0.4 2.2812 2.3354 2.3336 1.5212 1.6787
8 0.4 2.5733 2.6375 2.6352 1.6198 1.8125

6 0.4123 2.0272‡ 2.0808 2.0743 1.3852c 1.5697
7 0.4123 2.3263‡ 2.3925 2.3844 1.4732c 1.7068
8 0.4123 2.6252‡ 2.7043 2.6946 1.5738c 1.8453

12 0.4123 3.8220‡ 3.9513 3.9351 1.9710c 2.4075
16 0.4123 5.0191‡ 5.1983 5.1757 2.3661c 2.9755
30 0.4123 9.2083‡ 9.5651 9.5176 3.6838c 4.9763

a Exact.
b Calculated from Eq. (28) as for a linear molecule.
c Ref. 58.
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and

aef
mix=C

i
xia

ef
ii

vef
ii

vef
mix

, (35)

respectively.
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Fig. 2. Equation of state for hard models of n-alkane fluids. Continuous curve: Eq. (10)
with or without the term DBgefgef (both results are indistinguishable at the scale of the figure).
Dashed curve: equations fitted to the simulation data, from Refs. 57 and 58. The arrows cor-
respond to the packing fraction of the fluid in equilibrium with the solid.

Equation of State for n-Alkane Models 441



Instead, the estimation of the second virial coefficient,

Bmix=C
i

C
j

xixjBij (36)

of the mixtures cannot be performed from the second virial coefficients of
the corresponding pure fluids, because of the cross term Bij. The latter, for
convex molecules is given by [38]

Bij=
1
2 (1+3aii) vii+

1
2 (1+3ajj) vjj+DB, (37)
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Fig. 3. Equation of state for repulsive models of n-alkane fluids. Continuous curve:
Eq. (10) with or without the term DBgefgef (both results are indistinguishable at the scale
of the figure). Points: simulation data, from Ref. 59.
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where DB depends on the geometry of both molecules and is usually small
compared with the remaining terms of Eq. (37). If we assume that this
expression holds approximately for nonconvex molecules too, and we take
DB % 0, then we will have

Bg
mix=

Bmix

vmix
%

1
vmix

C
i

xiBii, (38)

so that it can be determined approximately from the second virial coeffi-
cients of the pure fluids too.

4. RESULTS AND DISCUSSION

Table I lists the values of the parameters, obtained from the proce-
dures described in the preceding section, for the fluids of interest. One can
see that the values of vef determined from the Connolly procedure and
those obtained from Eq. (28) considering the n-alkane molecules as linear
fused hard spheres are nearly equal, as stated before.

In Figs. 2 and 3, the results obtained from Eq. (10) for the repulsive
models of n-alkane pure fluids are compared with simulation data [57–59].
One can see that the agreement between theory and simulation is quite
good. The results are nearly the same if the term DBgefgef in Eq. (10) is
neglected.

Finally, in Fig. 4, results from Eq. (23) are compared with simulation
data [59] for two n-alkane model mixtures. Now the influence of the term
DBgef

mix gef
mix in Eq. (23) cannot be neglected. In any case, theory overestima-

tes the simulation data at high densities and the deviation seems to increase
as the molecules in the mixture are more disparate in size. One possible

0

5

1 0

1 5

2 0

2 5

3 0

Z

0.0 0.1 0.2 0.3 0.4 0.5 0.6

n - m = 10 - 6

η mix

0

5

1 0

1 5

2 0

2 5

3 0

Z

0.0 0.1 0.2 0.3 0.4 0.5 0.6

mixη 

n - m = 12 - 4

Fig. 4. Equation of state for repulsive models of n-alkane fluid mixtures. Continuous curve:
Eq. (10) without the term DBgefgef. Dashed curve Eq. (10). Points: simulation data, from
Ref. 59.
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reason is that the term DB in Eq. (37) is not negligible for this kind of
mixture. However, a greater variety of mixtures of n-alkanes should be
analyzed before we can draw any conclusion.
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